Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Adv Biol (Weinh) ; 7(11): e2200289, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36650949

RESUMEN

Inhabitants of urban areas are constantly exposed to light at night, which is an important environmental factor leading to circadian disruption. Streetlights filtering light through the windows and night dim light lamps are common sources of dim light at night (DLAN). The female population is susceptible to circadian disruption. The present study is aimed to determine the impact of DLAN on female Wistar rats circadian rhythms, metabolism, reproductive physiology, and behavior. After 5 weeks of DLAN exposure daily, oscillations in activity and body temperature of female rats are abolished. DLAN also decreases nocturnal food ingestion, which results in a diminishment in total food consumption. These alterations in the temporal organization of the body are associated with a significant decrease in melatonin plasmatic levels, reproductive disruptions, decreased exploration times, and marked anhedonia. This study highlights the importance of avoiding exposure to light at night, even at low intensities, to maintain the circadian organization of physiology, and denotes the great necessity of increasing the studies in females since the sexual dimorphism within the effects of desynchronizing protocols has been poorly studied.


Asunto(s)
Actividad Motora , Fotoperiodo , Ratas , Femenino , Animales , Actividad Motora/fisiología , Ratas Wistar , Ritmo Circadiano/fisiología , Luz
3.
Adv Biol (Weinh) ; 7(11): e2200116, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-35818679

RESUMEN

Eating during the rest phase is associated with metabolic syndrome, proposed to result from a conflict between food consumption and the energy-saving state imposed by the circadian system. However, in nocturnal rodents, eating during the rest phase (day-feeding, DF) also implies food intake during light exposure. To investigate whether light exposure contributes to DF-induced metabolic impairments, animals receive food during the subjective day without light. A skeleton photoperiod (SP) is used to entrain rats to a 12:12 cycle with two short light pulses framing the subjective day. DF-induced adiposity is prevented by SP, suggesting that the conflict between light and feeding stimulates fat accumulation. However, all animals under SP conditions develop glucose intolerance regardless of their feeding schedule. Moreover, animals under SP with ad libitum or night-feeding have increased adiposity. SP animals show a delayed onset of the daily rise in body temperature and energy expenditure and shorter duration of nighttime activity, which may contribute to the metabolic disturbances. These data emphasize that metabolic homeostasis can only be achieved when all daily cycling variables are synchronized. Even small shifts in the alignment of different metabolic rhythms, such as those induced by SP, may predispose individuals to metabolic disease.


Asunto(s)
Intolerancia a la Glucosa , Fotoperiodo , Ratas , Animales , Adiposidad , Conducta Alimentaria , Ritmo Circadiano , Intolerancia a la Glucosa/etiología , Obesidad/etiología , Esqueleto
4.
Glia ; 71(2): 155-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971989

RESUMEN

Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.


Asunto(s)
Microglía , Fenómenos Fisiológicos , Microglía/fisiología , Macrófagos , Sistema Nervioso Central , Encéfalo , Inmunidad Innata
5.
ACS Chem Neurosci ; 13(19): 2821-2828, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36122168

RESUMEN

Diabetes mellitus type 2 (T2D) complications include brain damage which increases the risk of neurodegenerative diseases and dementia. An early manifestation of neurodegeneration is olfactory dysfunction (OD), which is also presented in diabetic patients. Previously, we demonstrated that OD correlates with IL-1ß and miR-146a overexpression in the olfactory bulb (OB) on a T2D rodent model, suggesting the participation of inflammation on OD. Here, we found that OD persists on a long-term T2D condition after the downregulation of IL-1ß. Remarkably, OD was associated with the increased expression of the dopaminergic neuronal marker tyrosine hydroxylase, ERK1/2 phosphorylation, and reduced neuronal activation on the OB of diabetic rats, suggesting the participation of the dopaminergic tone on the OD derived from T2D. Dopaminergic neurons are susceptible in neurodegenerative diseases such as Parkinson's disease; therefore further studies must be performed to completely elucidate the participation of these neurons and ERK1/2 signaling on olfactory impairment.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MicroARNs , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Proteína Quinasa 1 Activada por Mitógenos , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/farmacología , Bulbo Olfatorio , Fosforilación , Ratas , Tirosina 3-Monooxigenasa/metabolismo
6.
Front Integr Neurosci ; 15: 722523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539357

RESUMEN

Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid ß peptide (Aß) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aß in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aß clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.

8.
BMC Neurosci ; 22(1): 14, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653273

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by cognitive impairment that eventually develops into dementia. Amyloid-beta (Aß) accumulation is a widely described hallmark in AD, and has been reported to cause olfactory dysfunction, a condition considered an early marker of the disease associated with injuries in the olfactory bulb (OB), the hippocampus (HIPP) and other odor-related cortexes. Adiponectin (APN) is an adipokine with neuroprotective effects. Studies have demonstrated that APN administration decreases Aß neurotoxicity and Tau hyperphosphorylation in the HIPP, reducing cognitive impairment. However, there are no studies regarding the neuroprotective effects of APN in the olfactory dysfunction observed in the Aß rat model. The aim of the present study is to determine whether the intracerebroventricular (i.c.v) administration of APN prevents the early olfactory dysfunction in an i.c.v Amyloid-beta1-42 (Aß1-42) rat model. Hence, we evaluated olfactory function by using a battery of olfactory tests aimed to assess olfactory memory, discrimination and detection in the Aß rat model treated with APN. In addition, we determined the number of cells expressing the neuronal nuclei (NeuN), as well as the number of microglial cells by using the ionized calcium-binding adapter molecule 1 (Iba-1) marker in the OB and, CA1, CA3, hilus and dentate gyrus (DG) in the HIPP. Finally, we determined Arginase-1 expression in both nuclei through Western blot. RESULTS: We observed that the i.c.v injection of Aß decreased olfactory function, which was prevented by the i.c.v administration of APN. In accordance with the olfactory impairment observed in i.c.v Aß-treated rats, we observed a decrease in NeuN expressing cells in the glomerular layer of the OB, which was also prevented with the i.c.v APN. Furthermore, we observed an increase of Iba-1 cells in CA1, and DG in the HIPP of the Aß rats, which was prevented by the APN treatment. CONCLUSION: The present study describes the olfactory impairment of Aß treated rats and evidences the protective role that APN plays in the brain, by preventing the olfactory impairment induced by Aß1-42. These results may lead to APN-based pharmacological therapies aimed to ameliorate AD neurotoxic effects.


Asunto(s)
Adiponectina/farmacología , Enfermedad de Alzheimer , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos del Olfato , Péptidos beta-Amiloides/toxicidad , Animales , Modelos Animales de Enfermedad , Inyecciones Intraventriculares , Masculino , Trastornos del Olfato/etiología , Ratas , Ratas Wistar
9.
J Neurosci Res ; 99(2): 604-620, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33078850

RESUMEN

Individuals who regularly shift their sleep timing, like night and/or shift-workers suffer from circadian desynchrony and are at risk of developing cardiometabolic diseases and cancer. Also, shift-work is are suggested to be a risk factor for the development of mood disorders such as the burn out syndrome, anxiety, and depression. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental health effects associated with circadian disruption. Here, we explored whether adult male Wistar rats exposed to an experimental model of shift-work (W-AL) developed depressive and/or anxiety-like behaviors and whether this was associated with neuroinflammation in brain areas involved with mood regulation. We also tested whether time-restricted feeding (TRF) to the active phase could ameliorate circadian disruption and therefore would prevent depressive and anxiety-like behaviors as well as neuroinflammation. In male Wistar rats, W-AL induced depressive-like behavior characterized by hypoactivity and anhedonia and induced increased anxiety-like behavior in the open field test. This was associated with increased number of glial fibrillary acidic protein and IBA-1-positive cells in the prefrontal cortex and basolateral amygdala. Moreover W-AL caused morphological changes in the microglia in the CA3 area of the hippocampus indicating microglial activation. Importantly, TRF prevented behavioral changes and decreased neuroinflammation markers in the brain. Present results add up evidence about the importance that TRF in synchrony with the light-dark cycle can prevent neuroinflammation leading to healthy mood states in spite of circadian disruptive conditions.


Asunto(s)
Ansiedad/prevención & control , Encéfalo/patología , Depresión/prevención & control , Conducta Alimentaria , Horario de Trabajo por Turnos/efectos adversos , Animales , Ansiedad/etiología , Ansiedad/patología , Astrocitos/patología , Complejo Nuclear Basolateral/patología , Región CA3 Hipocampal/patología , Proteínas de Unión al Calcio/análisis , Ritmo Circadiano , Depresión/etiología , Depresión/patología , Modelos Animales de Enfermedad , Ingestión de Energía , Preferencias Alimentarias , Proteína Ácida Fibrilar de la Glía/análisis , Inflamación , Hígado/metabolismo , Masculino , Proteínas de Microfilamentos/análisis , Microglía/ultraestructura , Prueba de Campo Abierto , Corteza Prefrontal/patología , Distribución Aleatoria , Ratas , Ratas Wistar , Reconocimiento en Psicología , Horario de Trabajo por Turnos/psicología , Factores de Tiempo , Aumento de Peso
10.
Neurochem Res ; 45(8): 1781-1790, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32405762

RESUMEN

Type 2 diabetes (T2D) is associated with cognitive decline and dementia. Both neurodegenerative conditions are characterized by olfactory dysfunction (OD) which is also observed in diabetic patients. Diabetes and neurodegeneration display altered miRNAs expression; therefore, the study of miRNAs in the diabetic olfactory system is important in order to know the mechanisms involved in neurodegeneration induced by T2D. In this work we evaluated the expression of miRs206, 451, 146a and 34a in the olfactory bulb (OB) of T2D rats and its association with OD. T2D induction was performed by administering streptozotocin to neonatal rats. The olfactory function was evaluated after reaching the adulthood by employing the buried pellet and social recognition tests. After 18 weeks, animals were sacrificed to determinate miRNAs and protein expression in the OB. T2D animals showed a significant increase in the latency to find the odor stimulus in the buried pellet test and a significant reduction in the interest to investigate the novel juvenile subjects in the social recognition test, indicating OD. In miRNAs analysis we observed a significant increase of miR-146a expression in the OB of T2D rats when compared to controls. This increase in miR-146a correlated with the overexpression of IL-1ß in the OB of T2D rats. The present results showed that OD in T2D rats is associated with IL-1ß mediated-inflammation and miR-146a overexpression, suggesting that high levels of IL-1ß could trigger miR-146a upregulation as a negative feedback of the inflammatory response in the OB of T2D rats.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Inflamación/fisiopatología , MicroARNs/metabolismo , Trastornos del Olfato/fisiopatología , Bulbo Olfatorio/metabolismo , Animales , Inflamación/epidemiología , Interleucina-1beta/metabolismo , Masculino , Trastornos del Olfato/epidemiología , Ratas Wistar
11.
Sci Rep ; 10(1): 6243, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277140

RESUMEN

Night-workers, transcontinental travelers and individuals that regularly shift their sleep timing, suffer from circadian desynchrony and are at risk to develop metabolic disease, cancer, and mood disorders, among others. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental metabolic effects associated with circadian disruption. As an alternative, we hypothesized that a timed piece of chocolate scheduled to the onset of the activity phase may be sufficient stimulus to synchronize circadian rhythms under conditions of shift-work or jet-lag. In Wistar rats, a daily piece of chocolate coupled to the onset of the active phase (breakfast) accelerated re-entrainment in a jet-lag model by setting the activity of the suprachiasmatic nucleus (SCN) to the new cycle. Furthermore, in a rat model of shift-work, a piece of chocolate for breakfast prevented circadian desynchrony, by increasing the amplitude of the day-night c-Fos activation in the SCN. Contrasting, chocolate for dinner prevented re-entrainment in the jet-lag condition and favored circadian desynchrony in the shift-work models. Moreover, chocolate for breakfast resulted in low body weight gain while chocolate for dinner boosted up body weight. Present data evidence the relevance of the timing of a highly caloric and palatable meal for circadian synchrony and metabolic function.


Asunto(s)
Desayuno/fisiología , Chocolate , Síndrome Jet Lag/prevención & control , Trastornos del Sueño del Ritmo Circadiano/prevención & control , Animales , Peso Corporal/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Humanos , Síndrome Jet Lag/fisiopatología , Comidas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Horario de Trabajo por Turnos/efectos adversos , Trastornos del Sueño del Ritmo Circadiano/etiología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Núcleo Supraquiasmático/metabolismo , Aumento de Peso/fisiología
12.
IEEE Trans Nanobioscience ; 18(4): 535-541, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31398128

RESUMEN

Silica nanoparticles (SiO2-NP) are an option as drug carriers due to their biodegradability, biocompatibility, and capacity to bind themselves to other compounds. However, until now, the effect of these particles on the brain when neurodegeneration occurs is unknown. Hence, this work focused on the in vivo evaluation of the neurotoxic effects of SiO2-NP when oxidative and inflammation are present during the development of Parkinson's disease. To determine whether SiO2-NP may act as a non-neurotoxic carrier we evaluated if the intragastric administration (ig) of SiO2-NP of 150 nm (25, 50 and 100 mg/kg administered for five consecutive days) increased neuronal damage induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. SiO2-NP administration did not further decrease cell viability assessed by MTT reduction, nor increased lipid peroxidation measured by TBARS or TNF α levels in the striatum and the substantia nigra in the MPTP model. Furthermore, we observed no additional reduction in striatal dopamine levels. The present results suggest that SiO2-NP of 150 nm are suitable nanocarrier for Parkinson's disease drugs without generating any additional damage.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Nanopartículas/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Dióxido de Silicio/administración & dosificación , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Masculino , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Trastornos Parkinsonianos/metabolismo , Serotonina/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Auton Neurosci ; 218: 43-50, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30890347

RESUMEN

The suprachiasmatic nucleus (SCN) is responsible for determining circadian variations in physiological setpoints. The SCN achieves such control through projections to different target structures within and outside the hypothalamus. Thus the SCN prepares the physiology of the body every 24 h via hormones and autonomic nervous system (ANS), to coming changes in behavior. Resulting rhythms in hormones and ANS activity transmit a precise message to selective organs, adapting their sensitivity to coming hormones, metabolites or other essentials. Thus the SCN as autonomous clock gives rhythm to physiological processes. However when the body is challenged by infections, low or high temperature, food shortage or excess: physiological setpoints need to be changed. For example, under fasting conditions, setpoints for body temperature and glucose levels are lowered at the beginning of the sleep (inactive) phase. However, starting the active phase, a normal increase in glucose and temperature levels take place to support activities associated with the acquisition of food. Thus, the SCN adjusts physiological setpoints in agreement with time of the day and according to challenges faced by the body. The SCN is enabled to do this by receiving extensive input from brain areas involved in sensing the condition of the body. Therefore, when the body receives stimuli contradicting normal physiology, such as eating or activity during the inactive period, this information reaches the SCN, adapting its output to correct this disbalance. As consequence frequent violations of the SCN message, such as by shift work or night eating, will result in development of disease.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Homeostasis , Núcleo Supraquiasmático/fisiología , Animales , Sistema Nervioso Autónomo/fisiología , Relojes Circadianos/genética , Ritmo Circadiano/genética , Humanos , Hipotálamo/fisiología
14.
BMC Cancer ; 17(1): 625, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28874144

RESUMEN

BACKGROUND: Light at night creates a conflicting signal to the biological clock and disrupts circadian physiology. In rodents, light at night increases the risk to develop mood disorders, overweight, disrupted energy metabolism, immune dysfunction and cancer. We hypothesized that constant light (LL) in rats may facilitate tumor growth via disrupted metabolism and increased inflammatory response in the host, inducing a propitious microenvironment for tumor cells. METHODS: Male Wistar rats were exposed to LL or a regular light-dark cycle (LD) for 5 weeks. Body weight gain, food consumption, triglycerides and glucose blood levels were evaluated; a glucose tolerance test was also performed. Inflammation and sickness behavior were evaluated after the administration of intravenous lipopolysaccharide. Tumors were induced by subcutaneous inoculation of glioma cells (C6). In tumor-bearing rats, the metabolic state and immune cells infiltration to the tumor was investigated by using immunohistochemistry and flow cytometry. The mRNA expression of genes involved metabolic, growth, angiogenes and inflammatory pathways was measured in the tumor microenvironment by qPCR. Tumor growth was also evaluated in animals fed with a high sugar diet. RESULTS: We found that LL induced overweight, high plasma triglycerides and glucose levels as well as reduced glucose clearance. In response to an LPS challenge, LL rats responded with higher pro-inflammatory cytokines and exacerbated sickness behavior. Tumor cell inoculation resulted in increased tumor volume in LL as compared with LD rats, associated with high blood glucose levels and decreased triglycerides levels in the host. More macrophages were recruited in the LL tumor and the microenvironment was characterized by upregulation of genes involved in lipogenesis (Acaca, Fasn, and Pparγ), glucose uptake (Glut-1), and tumor growth (Vegfα, Myc, Ir) suggesting that LL tumors rely on these processes in order to support their enhanced growth. Genes related with the inflammatory state in the tumor microenvironment were not different between LL and LD conditions. In rats fed a high caloric diet tumor growth was similar to LL conditions. CONCLUSIONS: Data indicates that circadian disruption by LL provides a favorable condition for tumor growth by promoting an anabolic metabolism in the host.


Asunto(s)
Ritmo Circadiano , Metabolismo Energético , Neoplasias/metabolismo , Neoplasias/patología , Animales , Biomarcadores , Temperatura Corporal , Modelos Animales de Enfermedad , Glucosa/metabolismo , Xenoinjertos , Humanos , Inflamación/metabolismo , Recuento de Leucocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Actividad Motora , Fotoperiodo , Ratas , Microambiente Tumoral
15.
FEBS Lett ; 588(17): 3104-10, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24983496

RESUMEN

Hepatic circadian transcription, considered to be driven by the liver clock, is largely influenced by food even uncoupling it from the suprachiasmatic nucleus (SCN). In SCN lesioned rats (SCNx) we determined the influence of a physiological feeding schedule on the entrainment of clock and clock-controlled (CCG) genes in the liver. We show that clock genes and the CCG Rev-erbα and peroxisome proliferator-activated receptor alpha (PPARα) in food-scheduled intact and SCNx have a robust diurnal differential expression persisting after a 24h fast. However, hepatic nicotinamide phosphoribosyl transferase (Nampt) shows time dependent changes that are lost in intact animals under fasting; moreover, it is unresponsive to the nutrient status in SCNx, indicating a poor reliance on liver clock genes and highlighting the relevance of SCN-derived signals for its metabolic status-related expression.


Asunto(s)
Relojes Circadianos/genética , Alimentos , Hígado/metabolismo , Núcleo Supraquiasmático/fisiopatología , Animales , Ayuno/metabolismo , Regulación de la Expresión Génica , Proteína 2 Inhibidora de la Diferenciación/genética , Masculino , Nicotinamida Fosforribosiltransferasa/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , PPAR alfa/genética , Ratas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...